If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+2x^2=180
We move all terms to the left:
4x+2x^2-(180)=0
a = 2; b = 4; c = -180;
Δ = b2-4ac
Δ = 42-4·2·(-180)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{91}}{2*2}=\frac{-4-4\sqrt{91}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{91}}{2*2}=\frac{-4+4\sqrt{91}}{4} $
| -0.025x=82.6 | | -2(x-7=28 | | (5a-3a)+(8+7a)=0 | | d4− 1= 3 | | 2(x+4)=x-4 | | -x-10=-10 | | 4x−x+5=14 | | h-6=4 | | 2x+3(1-2x)=x+8 | | (5a-3a)-(-6a-6)=0 | | 1/2(3x-4)=5 | | y/17=-24 | | 16=j2+12 | | 59x-34/5=1 | | 3y=21/3=7/3 | | 16 = j2+ 12 | | 15-3k=6 | | d/2+3=2 | | 13-9=x/5 | | 15−3k=6 | | q3-2=2 | | q+2=9q= | | q3− 2= 2 | | 23x-27x=10-14 | | |-2n+5|+3=13 | | 2(x+)4=2(-8-x)-2x | | X-2(1-x)=7 | | (1/2)(7x+2)=7x | | 3f−4=2 | | 6−2j=2 | | 2x-5(-2)=10 | | 8.4+4=6.2x+21.6 |